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Abstract

An experimental study of the character of vortices in

simple cylindrical vortex chambers completely open at one end

is presented. Special attention is given to the problem of

the transition from one-celled to two-celled vortex structure.

It is shown that for turbulent vortices in vortex chambers

having length-to-diameter ratios in the range 0 < L/D < 5,
the character of the flow is primarily dependent on the ratio

of a characteristic tangential velocity to a characteristic

radial velocity V/U. In addition, it is shown that the

Reynolds number based on the radial flow, while a parameter

of major importance in laminar vortices, plays but a minor

role in turbulent vortex motion. Transition from one-celled

to two-celled vorte.: structure started for all vortex

configurations tested (0 < L/D < 5) when V/U exceeded

approximately 3.
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1. Introduction

Recently, there has been much interest in vortex flows.

This Interest has been stimulated by the fact that there

have been proposed, within the past few years or so, a number

of interesting flow devices which depend for their perform-

ance on the properties of rapidly rotating, axially symmetric

flows. Some of the interesting experimental studies of

vortex motions that have been made are those of Kendall

(1962), Rosenswieg (1962), Ragsdale (1960), Donaldson (1961),

McCune and Williamson (1961), Schowalter and Johnstone (1960),

and Keyes (1961).

It is beyond the scope of this paper to attempt a

review or critique of all of these recent studies. Suffice

it to say that all of them considered in some detail the

effects of turbulence on vortex motions and/or the type of

axial flow patterns that exist in vortex chambers having

specific configurations.

The present paper is no exception. In this paper we

shall deal with the motion in simple cylindrical vortex

chambers which are completely open at one end. We shall be

interested not only in the effects of turbulence on such

vortices but also in the behavior and structure of the

axial motions that exist.

The present work grew quite naturally out of a rather

extensive theoretical study of the characteristics of three-

dimensional laminar vortices carried out by the senior author

of this paper and his colleagues over the past few years (see

Donaldson (1956) and Donaldson and Sullivan (1960)). During-

the course of these investigations, theoretical solutions

were found for both one- and two-celled vortex structures.

Since both one- and two-celled vortex structures had been

observed in the laboratory and there did not exist in the

literature any experimental study specifically aimed at
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determining the criteria for transition from one type of

flow behavior to the other, the present study was initiated

in order to attempt to establish such criteria.

Because of the way in which this study originated, it

is felt that it will be helpful if, before describing the

experimental apparatus used and the experiments themselves,

a very brief review of the basic equations and theoretical

results of the previous studies is given.



2-1

2. Basic Equations

In this study we will assume that we are dealing with

an incompressible fluid of constant viscosity. We will

assume axial symmetry so that for a cylindrical coordinate

system (i, , ) we set the operator / = 0. The

motion is further assumed to consist of a steady part

with velocity components i, , and i and a fluctuat-

ing part having components u" , and q whose

time averages are zero. The time averaged equations of

motion for the steady part of such a flow satisfy the

following set of equations

T + p =) o (1)

D _u 2 = +/2i- ) (j) (-') (2)
2

+ != v _ 1 -- Fi'')- u (3)
Dt ri i T

Dt
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Here, P = D/p, where p is the pressure and p is the

density, v is the kinematic viscosity i±/p, and the

operators V and D/DE are

- - + 1_ + a

D r r

The correlations of the form u 'u, u v, etc. are the

negatives of the usual Reynolds stress terms divided by the

density (see Lamb (1932) pp. 674-678).

Some very general conclusions concerning this set of

equations can be dravm from an examination of their non-

dimensional form. In order to put equations (1) through (4)

in this form, it is necessary to make some assumptions

concerning the proper parameters by which the Reynolds stress

terms are to be made non-dimensional. We first note, however,

that in view of equation (1), u and w are closely connected

so that the magnitude of u orders the magnitude of w.

We thus choose a reference radial velocity U and define

u = Uu(r, z)

= Uw(r, z)

where r = r/R and z = z/R are non-dimensional coordinates

defined in terms of the reference length R. Since the

magnitude of the tangential velocity v is not ordered by

either u or w, we choose a second reference velocity V
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for the tangential motion and set

= Vv(r, z) (6)

We may now return to the question of the non-dimensionali-

zation of the Reynolds stress terms. We will assume that

these stresses are functions of the related rates of deforma-

tion. When account is taken of the axial symmetry, these

deformation rates and the reference velocity on which they

depend are

rr 
U

6
r

Ezz

C0 o = . V

rz 2 M

In view of the relationships exhibited in equations (7),

we will make the Reynolds stress terms non-dimensional

according to the following scheme

-u u = U2a11 (r, z)

- v V= U 2 2 2 (r, z)

-w'w" = U2 a33 (r, z)

-u v = V2  ,(r, z)

-v '" = V2 o2 3 (r, z)

-u ' w = U2 a13 (r, z)
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In order to make the pressure dimensionless, we note

that, according to equation (2), a part of the static

pressure must balance the centrifugal forces which are

proportional to the square of the tangential velocity. On

the other hand, according to equation (4), a part of the

pressure must account for the acceleration of the fluid in

the axial direction. We will thus write

= V2PI(r, z) + U2P2 (r, z) (9)

In terms of the non-dimensional quantities defined above,

the basic equations (1) through (4) become (with t --tU/R)

(ru) + 7(rw) = 0 (io)
br z

'; J) - = - - "4 -+ -- --1 , iv u -
I r VJ r _UR V /\r 2 )

(11)
+ "-u_ 1_ 22 (rall) + °3)

Dv uv v (,-2 tv\(V i , + O23'
+ V (r al2) -a2 (12)

Dw 'V'2P P 2 P2Iw 1,61 ,.33Dw -r()2-l r2+v 2J+- (13)

We may make the following observations from the system

of equations (10) through (13). Firstly, the fluid motions

are given completely in terms of Just two parameters. These

parameters are a Reynolds number N = UR/v based on the
reference radial velocity and a characteristic radial

dimension, and the ratio U/V, i.e. the ratio between the

characteristic radial and tangential velocities. Secondly,
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for high Reynolds numbers when the Reynolds stresses are

dominant, we would expect the parmneter U/V to become

the controlling factor in determinin{ the motion. This

statement must be qualified somewhat. le can never expect

the ratio U/V to become the sole parameter governing the

motion at high Reynolds numbers since the stress functions

a j must themselves be weakly dependent on Reynolds number.

In addition, the viscous term (v/Ur)V 2w in equation (13)

will turn out, in the particular flows we will investigate

here, to behave in a boundary-layer-like manner and hence

the Reynolds number N remains an important paraneter

although, as we shall see, it is not the primary parameter

in governing the motions.

We may also make the following general observation
concerning the tangential velocities which are governed by

equation (12). We note from this equation that if both the

laminar and turbulent stresses are absent (v = 0 and

aij = 0), then the product vr remains constant along all
streamlines. Thus, if the radial flow is inward, we would
obtain a truly vortex-like behavior. That is, the tangential

velocity would increase inversely with radius as the flow

proceeded towards the axis of symmetry. If only laminar

stresses are present (v X 0 and aiJ = 0), the tangential
velocity must vanish at r = 0 but the flow will become

more vortex-like the higher the Reynolds number pUR/4.

Since the mass flow into a vortex per unit length in the

z direction is proportional to pUR, we would expect to

obtain more vortex-like behavior of such flows the higher
we made the inward radial mass flow regardless of what the

tangential velocity is. Experimentally, this type of

behavior is not, in general, observed. The reason is that,

for the usual vortex experiments, the Reynolds number is

sufficiently high so that the vortex is turbulent and the
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stresses which dominate the viscous behavior are the

Reynolds stresses. Turning our attention to equation (12)

for the case of large Reynolds number, we see that the

parameter governing the viscous behavior of the vorte;:

is U/V. In other words, for turbulent vortices to have a

more vortex-like behavior, i.e. tangential velocities

approaching a 1/r dependence, we would wane to make the

ratio U/V large, and we would e:.pect flows in which

U/V was small to behave in a manner somewhat similar to

a very viscous laminar vortex. Je will see in what

follows that this rather general observation obtained from

dimensional considerations is supported by experimental

results.
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3. Boundary Conditions and ExistinE Solutions

In the present experimental study, we are interested

in the behavior of the steady flow in a cylindrical vortex

chamber which is let into an otherwise plane surface (see

figure 1). Let the depth of this vortex chamber be L

and its inside radius R. The tantential motion is intro-

duced by rotation of the porous cylinder through which a

radial flow is maintained by virtue of a pressure differen-

tial across the porous wall. Let the tangential velocity

at R be V, where V is independent of z. It is

possible to arrange matters experimentally so that the

radial velocity at r = R is approximately independent of

. Let this radial velocity at R have magnitude U.

At the present time, it is hopeless to seek a solution

of equations (10) through (13) that is valid for both the

region inside and outside (above) the vortex cup Just

described. The best that can be done is to seek solutions

to related problems having far simpler boundary conditions

and to use these solutions to draw inferences concerning

the behavior of the more general problem.

Since, experimentally, one finds that what happens in

the region exterior to the vortex cup depends on the type

of flow produced within the vortex cup, it would seem

logical to seek solutions that would be approximately valid

within the vortex chamber. Even this simplified problem is,

in general, very difficult because of the behavior of the

viscous boundary layers on the floor of the vortex cup. If

these effects are neglected we obtain a problem which, at

least for the case of laminar flow, is tractable from the

point of view of analysis.

Following this line of reasoning, if we neglect the

end effects of both the open and closed ends of the vortex

chamber, we should seek a steady solution to equations (10)
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Figure 1. Vortex chamber geometry.
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through (13) subject to the following boundary conditions

u(l, z) = I u(o) = 0

v(l, z) = I v(o) = 0
(1k)

w(l, z) 
= 0

w(r, 0) = 0 /r=o

For the case of luminar flow (v ;4 0, aiJ = 0), such motions

have been studied extensively by Donaldson (2L56) and by

Donaldson and Sullivan (1960). The motions are sUch that

the radial and tangential velocities are independent of z

while the axial velocity is of the form w = zf(r). The

pressures P1  and P2 are of thie form

P1 = P1 (r) (15)

P2 = Cz
2

where C is a constant. Under these conditions, equations

(10) and (13) become independent of (11) and (12); that

is, the radial and axial motions become independent of the

tangential motion. Once equations (10) and (13) are

solved for u(r) and f(r), equation (12) may be solved for

the tangential motion, v = v(r). Finally, equation (11),

from which the term containing P2  disappears, may be

solved for the pressure P1 which is associated with the

balancing of certrifugal forces, radial accelerations, and

stresses acting in the radial direction.

The most interesting single feature of the results of

Donaldson and Sullivan's study which is of importance here

is the fact that they found that for inward directed radial

flows there existed two distinct solutions for the motion

in the vortex chamber corresponding to either a one- or
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two-celled flow configuration as illustrated in figure 2.

There is nothing in the solutions themselves to indicate

which of these two motions is preferred. However, given a

vortex chamber of finite length L such as is shown in

figure 1, one can reason what might determine the transi-

tion from one- to two-celled flow.

Consider the vortex chamber and the flow emanating

from it shown in figure 3. For zero or very small tangen-

tial velocities of the chamber wall, the streamlines are

very much as shown. The flow leaves the vortex chamber

almost parallel to the axis of symmetry and, as it does so,

it entrains by viscous action a certain amount of the gas

in the region into which it flows. The pressure just out-

side the exit of the vortex chamber at point A will be

equal to ambient pressure far from the vortex chamber. At

the point B on the centerline in the exit plane, the static

pressure will differ from that at A by an amount which can

be found by integrating equation (11) with respect to r

from the centerline to the full radius R. 1-or zero rotation

the static pressure at B is slightly higher than the pres-

sure at A due to the decelleration of the radial flow.

As the chamber wall is rotated faster and faster, the

pressure at B drops rapidly due to the necessity of

balancing the centrifugal forces. Obviously, for a given

V, this pressure drop will be larger the more vortex-like

the tangential velocity profile becomes. Now let us consider

the total pressure at B. The total pressure at B will be

made up of the static pressure at B plus the dynamic pres-

sure due to the axial component of velocity along the center-

line. Since this a;ial flow at the exit plane of the vortex

chamber must account for all the flow that entered through

the sides of the chamber, the average velocity in the exit

plane 7 must be given by

rRR2 V= 2RLU

or 
= 2ET J

R
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Figure 3 Schematic view of streamline pattern for

nonrotating vortex chamber.
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Thus for a given radial flow U we would expect the

dynamic pressure at the point B to be proportional to

the square of the length-to-diameter ratio (L/D) of the

vortex chamber.

Now for a given chamber, let us follow what happens

to the total pressure at the point B as the vortex

chamber is taken from zero to a high rotational velocity.

Initially, with V = 0, the total pressure is higher than

ambient pressure by an increment that is made up of two

parts; a static part arising from the terms containing u

in equation (10) and a dynamic part arising from the mass

flow leaving the chamber. When the vortex chamber is

rotated, the static pressure at B drops. It may in

fact, for a given depth of chamber, drop so much that the

total pressure at B is less than the ambient pressure

into which the vortex chamber is exhausting. In such a

case, the one-celled flow we have been envisioning cannot

exist. We must suppose instead that a two-celled flow

exists. Actually, due to the finite length of a real

vortex chamber and the attendant end effects, this transi-

tion from one- to two-celled flow does not occur suddenly.

As we shall see from the experimental results presented

later, as the velocity of rotation is increased, a second

cell starts well above the vortex chamber and is gradually

sucked into the center of the vortex chamber itself.

These ideas may perhaps be somewhat clearer if we

present a few numerical results based on the theoretical

solutions of Donaldson and Sullivan. In figure 4 there is

plotted as a function of V/U the non-dimensional pressure

difference between the static pressures at the exit plane

and on the centerline (point B) of a vortex chamber having

a length-to-diameter ratio of five. As mentioned before,

two parameters (V/U and N) govern the motion so that the
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Figure 4. Static pressure at the center of the exit plane

(point B) as a function of V/U based on the solutions of

Donaldson and Sullivan.
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Reynolds number N appears as an independent parameter.

As expected the static pressure drops off as the square of

V/U in order to balance the centrifugal forces. Also

as expected for each family of vortices the pressure drop

is more rapid the higher the numerical value of the

Reynolds number (the Reynolds number N is negative by

convention since inward velocities carry a negative sign).

Also included on figure 4 for comparison is the curve

showing the static pressure drop that would be experienced

if the vortex were not to turn in a vortex-like manner at

all, but were to have infinite viscosity and hence turn

within the vortex chamber as a solid body.

The critical value of V/U for which the total

pressure at point B of a vortex chamber is Just equal to

the ambient pressure is plotted in figure 5 as a function

of the length-to-diameter ratio of the chamber. Here

again the Reynolds number N is an independent parameter.

As one might expect, the lower the Reynolds number the

higher must be the V/U of the vortex chamber to achieve

the critical pressure drop. A very interesting fact in

regard to these results is the extremely low ratio of

V/U that is required to make a one-celled flow an

impossibility for normkal vortex chambers.

This is about all the information concerning the

behavior of laminar solutions that it will be useful to

present at this time. Since we iill be primarily interested

in turbulent vortices, we will proceed to a short discussion

of how we might expect the results discussed above to be

modified for the case of turbulent motion.
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radial Reynolds numbers N based on the solutions of

Donaldson and Sullivan.
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4. Turbulent Vortices

At the present time, far too little is known concern-

ing the nature of turbulent stresses in general or, for

that matter, about turbulent stresses in the particular

case of the vortex chambers under discussion here to permit

an analytical solution to equations (10) through (13).

However, if one assumes a typical mixing length formulation

for the turbulent stresses either of the form

= p2 2 ' = PA-2 . (6-v (16)

or

Pi'v' = P-a r (17)

and similar expressions for the other stresses, it is not

hard to show that the very simple flows of the form

u = u(r)

v = v(r) (18)

w = zf(r)

obtainable in the laminar case can no longer identically

satisfy the equations of motion. Because of this difficulty,

as well as the conceptual difficulties inherent in applying

a mixing length or other empirical approach, no theoretical

analyses similar to that given by Donaldson (1961) and

pursued by McCune and Williamson (1961) have been attempted.

Actually, in practice, the turbulent motions observed

can come very close to satisfying the conditions given in

equations (18). Thus, from a practical point of view,
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some insight into the behavior of turbulent vortices can

be gotten by considering them to behave in a manner similar

to laminar vortices. In this case, however, to describe

the viscous effects we replace the Reynolds number UR/v

by a number proportional to U/V. That is for turbulent
.

vortices, we take an effective Reynolds number N defined

as

N* kU (19)
V

As mentioned before, this reduces the number of

parameters governing the vortex motions under consideration

to Just one, namely, U/V. What, then, would we expect

to find in regard to the behavior of such parameters as

are plotted in figures 4 and 5 for the case of turbulent

vortices. Since there is only one parameter, the families

of curves dependent on Reynolds number for both the one-

celled and two-celled flows plotted in figure 4 would

collapse into Just one curve for each family. Further,

since the critical rotational speed (V/U)cr as shown in

figure 5 is no longer a function of Reynolds number, we

would expect to find that (V/U)cr is a function of L/D

alone. In view of this fact, we would expect, for a given

vortex chamber, that a pressure plot such as that shown in

figure 4 would also consist of Just a single curve. This

curve would start out from V/U = 0 following the single

curve of pressure versus V/U for one-celled vortices. As

it approached some critical value of V/U, the curve would

transit so as to follow the curve of pressure versus V/U

for two-celled vortices. While following the pressure

curve for any one prrticular type of flow (one-celled or

two-celled), we would expect these curves to have less

negative slope than the curves of constant Reynolds number
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since we are effectively increasing the viscous action or

lowering the effective Reynolds number as V/U is increased.

Before passing on to a discussion of experimental

results, it is worthwhile to point out an interesting.
constraint on the total physical stress T* in a vortex,

whether it is laminar or turbulent, for the special case

for which the tangential velocity is a function of the

radial coordinate alone. In this case, the equation

governing the tangential velocity, equation (12), may be

written in terms of the total stress

Pa (20)

as

6 =2r p .. 6 (ji~) (21)65 - r

Integrating equation (21) and noting that Tr¢ = 0 at

rr

7 = 0 one obtains

r = f- f -7- (i)d5 (22)

r or

Thus the total stress and hence the Relyolds stress can be

determined from a measurement of the mean velocity profiles

u and v. This relationship is often useful in considering

the flow within turbulent vortices (see for example Donaldson

(1961) and McCune nd Williamson (1961)).
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5. Experimental Appcaratus

In order to check experimentally the nature of the

cellular structure of simple vortices such as have been

discussed above, an apparatus was constructed that was

designed specifically to be able to test the conjectures

put forward in the preceding sections.

5.1. Vortex chamber

The chamber used to produce the desired three-dimension-

al vortex flows was designed so as to provide the greatest

flexibility in establishing the various boundary conditions

of interest. The vortices were produced inside a rotating

tube of uniformly porous ceramic material 11-1/2 inches

long, with an inside diameter D of 2.2 inches and a

3/16-inch wall thickness. This tube was supported vertical-

ly between end plates, which, in turn, were mounted on the

inner races of a pair of ball bearings. The bearing outer

races were held in fixed end plates which also acted as

end covers for the steel plenum chamber surrounding the

rotating assembly (see figure 6). - highly effective

labyrinth seal was machined in each rotating and stationary

end plate to minimize the leakage. The tube was rotated

by means of a belt-driven pulley attached to the lower

rotating end plate. A 3/4-horsepower direct current motor

was used to drive the assembly. The power supply was a

variable voltage, rectifier type which made possible

rotational speeds up to 2400 rpm. For the 2.2-inch tube

used, a maximum tangential wall velocity of about 24 ft/sec

could thus be obtained. Air was supplied from a 100-cubic

foot storage tank at 200 psig. An automatic, apring-loaded

regulator valve was 'uied to maintain the desire!d zagnation

pressure in the plenum chamber. The highest working pressure
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Figure 6. Cutaway view of vortex chamber apparatus.
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generally used (about 3 psig) was found to give a radial

velocity at the wall of about 6.5 ft/sec which corresponds

to a radial Reynolds number N = UR/v - -3800.

The effective length L of the vortex "cup" was

regulated by means of a movable floor plate inserted at

the lower end of the tube. The axial position of this plate

was adjusted by means of a motor-driven Jack screw. The

diameter of the plate was slightly less than the inside

diameter of the tube so that no contact with the rotating

tube was possible. The slight gap at the edge of the

plate was judged to have little effect on flow conditions

in the vortex cup. The maximum ratio of length to

diameter L/D, using the 2.2-inch tube, was slightly over

5.
The entire apparatus--vortex chamber, regulator, drive

motor, and Jack screw assembly--was mounted in a rigid

steel frame which provided convenient mounting locations

for necessary instrumentation (see figures 7 and 8).

The device just described was thus capable of estab-

lishing vortex-type flows within the porous tube for any

tangential velocity up to 24 ft/sec, any radial Reynolds

number up to -3800, and for any length-to-diameter ratio

up to 5, with all three parameters independently variable.

5.2. Instrumentation

The radial pressure distribution at the bottom of the

vortex was measured by means of six static pressure holes

in the floor plate. Static pressure and total pressure on

the center line for various axial locations (0 < z/L 1.0)

were measured by means of suitable tubes made of .032-inch

0.D. stainless steel tubing and mounted either at the center

pressure tap of the floor plate or from above. The most

reliable performance was achieved with a dual probe having



Figure 7. Vortex chamber mounted in stand showing drive

motor and chamber floor actuating assembly. The variable

voltage direct current power supply is at the right.

Figure 8. View of vortex apparatus showing porous cylinder

and 5-hole prism type probe in position.
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separate static and total pressure tips each of which could

be positioned in the region of interest by rotating the

tube 900 about its axis--the probe axis being normal to

the vortex axis. This probe was mounted above the chamber

and its use was limited to positions near the top of the

vortex cup.

Velocity profile measurements were made with two

commercially available, pitch and yaw sensitive, calibrated

probes. Each was of the 5-hole type, one having a prism

tip and the other a conical tip. The diameter of each

probe at the tip was .12-inch. (Factors influencing the

use of such probes in shear flows are discussed in

Section 6.) The prism probe was used for velocity distribu-

tions both at the top of (z/L = 1.0) as well as inside the

vortex cup. The conical probe was used only at the top.

All pressures were read from an adjustable-tilt

alcohol manometer consisting of four U-tubes suitably

connected to the probes.

5.3. Calibrations

Measurement of the supply tank blowdown rate, assuming

constant tank temperature, was used to determine the approxi-

mate mass flow rate as a function of plenum chamber pressure.

The leakage flow through the labyrinth seals was determined

with a solid tube in place of the porous tube, and this flow

was subtracted from the over-all mass flow to determine the

net flow through the porous wall. The leakage rate was

found to be less than 1 per cent of the total for all

conditions tested. The over-all mass flow was independent

of both rotational speed and length-to-diameter ratio of

the vortex cup, so that a single calibration curve was

sufficient for all possible conditions. Values of U -nd

N were based on this curve assuming a uniform axial distribu-

tion of mass flow through the porous wall. Rotational speed

was calibrated as a function of drive motor armature voltage

by means of a Strobotac.



6-1

6. Experimental Results

Since the principal objective of this work was the

establishment of criteria for determining the type of

cellular structure of vortices, procedures for detecting

the existence of such structure were first developed.

Assuming that for a radial inflow the only possible

structures have either one or two cells, as indicated by

the laminar theory, two methods of detecting such structure

were tried: (1) measurement of static and total pressures

on the center line and (2) direct measurement of component

velocity profiles.

6.1. Static and total pressures on the center line

As defined herein, a two cell vortex with radial inflow

at the outer boundary (porous wall) must consist of a

peripheral region of upward axial flow (directed out of the

top of the vortex cup) and a central region of downward

axial flow (directed into the vortex cup). The upward

axial flow region thus consists of fluid that entered

radially at the outer boundary plus the fluid that entered

axially at the center and ultimately reversed its direction.

(For an axially symmetric flow, of course, radial and

tangential velocity components must vanish at the center.)

Detection of a two-celled flow was thus based on the

presence of either a zero or negative (downward) axial

velocity on the center line--zero axial velocity indicating

the lower extremity of the center cell.

Total head tubes mounted at the bottom of the vortex

chamber facing upward in an axial direction and tubes

mounted from above facing downward were used in conjunction

with similarly mounted static tubes to make extensive

pressure surveys for a range of radial Reynolds number N,

tangential wall velocity V, length-to-diameter ratio L/D,
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and centerline locations E/L. Equality of total and

static pressures so measured under identical boundary

conditions was assumed to be indicative of zero axial

velocity. Consistent results, however, were difficult to

achieve in this way because the necessary exact matching

of boundary conditions for corresponding total and static

pressure measurements made during separate runs was extreme-

ly difficult. Subsequent use of the dual probe described

earlier resulted in more reliable data since the total and

static pressures at the same point were measured at very

nearly the same instant. This probe was used to measure the

outward axial component of total pressure as well as the

static pressure on the center line at i/L = 1.0 for

various values of the parameters.

With L/D and N held constant, readings were taken

for a number of tangential velocities V. Typical results

are shown in figures 9, 10, 11, 12, and 13 for several

radial Reynolds numbers and several depth-to-diameter

ratios. The data are presented in the form of a pressure

coefficient based on radial dynamic pressure at the wall

plotted against the non-dimensional velocity ratio parameter

V/U. For very small tangential velocities, it is seen

that the difference between the twzo curves represents the

dynamic pressure due to the upward (positive) axial velocity

on the center line. As V is increased, there is a drop

not only in the static and total pressures, but also in

the difference between them. This convergence is indicative

of a decreasing upward axial velocity on the center line.

Finally, the two pressures become equal, at which point

the upward axial velocity is apparently zero. Further

increase of V/U beyond (V/U)cr shows evidence of a

downward axial velocity. With the total head tip of the

probe still facing downward, it begins to register pressures

slightly but consistently less than does the static tip.
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This is what one might expect if the total head tube were

now considered to be sensing a base pressure due to the

axial flow directed away from its open end. This condition

persists to the highest V/U possible. The few cases

where individual points are reversed all occur in the

vicinity of the peculiar region of sudden pressure rise

and are therefore attributed to the difficulty of maintain-

ing steady flow conditions in this region.

In all the above cases, for a given cup length-to-

diameter ratio L/D, the value of (V/U)cr was found to be

virtually independent of radial Reynolds number over the

range tested. The dependence of (V/U)cr on L/D is shown

in figure 14 with the values of N indicated. The

significance of the various features of figures 9 through

14 is discussed in section 7.

6.2. Velocity profiles

Typical tangential and axial velocity profiles for

one of the cases just discussed (N = -900, L/D = 5) are

shown in figure 15. These profiles were determined by

using the 5-hole conical probe mounted above the vortex

chamber. Certain considerations involving probe effects

on the accuracy of these profiles are discussed later in

this section.

As V/U is increased, a decrease in outward axial

velocity near the center is immediately apparent while the

outer portions of the profile are essentially unchanged.

The tangential profile at first exhibits increasing veloci-

ties near the center, but the maximum value soon begins to

drop with increasing V/U while at the same time the radial

location of the maximum is displaced outward. These trends

continue until an inward axial velocity on the center line

approximately equal to the maximum outward value is

achieved. For higher V/U, the maximum inward velocity

changes only slightly while the radial extent of the inner

cell increases until it finally occupies a large portion
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of the 2-celled system.

Since it was not possible to measure negative w

directly with the 5-hole conical probe, those values shown

on the center line are computed from the static pressures

measured with the dual probe, assuming a total pressure

equal to atmospheric. Positive values of w on the center

line measured with both probes showed excellent agreement

except in the sensitive region near w = 0.

6.3. Probe effects on velocity measurements

By far the most significant source of experimental

error is thought to lie in the use of the 5-hole probes

in regions of high shear and near solid boundaries.

A description of the operation of the 5-hole conical

probe is now given in order to clarify the discussion of

such probe error sources. This probe had a single "total

head" hole at the apex of the concial tip with 4 "static"

holes a short distance down the conical surface, the

latter being spaced 900 apart and equidistant from the apex.

One opposed pair of static holes was aligned laterally with

respect to the probe shaft and the other pair longitudinal-

ly. The probe was mounted with respect to the vortex

chamber as shown in figure 16. It could be traversed

radially in either of two directions so that either pair

of holes could be in radial or tangential alignment. In

order to determine the local flow direction, at a particular

radial location, the probe was rotated about its shaft until

equal pressures were registered by the lateral holes. In

this position, the probe lay in a plane containing the

apparent velocity vector. The angle between the probe and

the velocity vector was then determined from the calibrations
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the left and axial travel on the right.
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by measuring the pressure difference between the longitudinal

holes. Calibrations also gave the true total pressure

corresponding to the "total head" hole reading for that

angle. True dynamic pressure was similarly calibrated for

the difference between lateral hole "static" pressure

readings and "total head" hole readingrs as a function of

the angle. With the magnitude and direction of the velocity

vector so determined, the components were computed. When

used in this way in flows with regions of high shear, it

is clear that misleading data may easily result since

holes on opposite sides of a symmetrical body immersed in

a shearing flow will show a pressure difference. Near

solid boundaries, too, there is a distortion in the flou:

pattern around the probe due to an interference-type effect

which also changes the angle at which the flow approaches

the probe. A third consideration is the radial static

pressure gradient balancing the centrifugal force. The

finite radial distance between the radially oriented pair

of holes may be sufficient to sense this gradient and thus

affect the accuracy still further. A full quantitative

evaluation of all these factors and how they interact and

depend on probe orientation for a particular flow would

require estensive tests with the probe immersed in flows

whose properties were determined in some alternate manner.

Such tests would represent a sizeable experimental program

in themselves and so none have been attempted. Application

of existing boundarj correction procedures to probe data

in this case was felt to be of little value. However, it

is possible to draw some general conclusions about the

validity of the measured profiles.

Tangential velocity. Effects due to high shear should

depend on whether the lateral or longitudinal holes are

used to evaluate this component. Check runs (figure 17)

using both methods seem to bear out the reasoning that the
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longitudinal holes nuay give lower values than the lateral

holes. On the other hand, the solid-boundary interference

effect could be appreciable. Even at a distance of 3 or

4 probe diameters from the wall (outer 40 per cent of the

profile), such an effect could be felt. Again, the method

of measurement should be a factor. It appears quite

consistent, therefore, to reason that the outer portions of

the v profiles shown in figure 15 exceed the inviscid

profile due to wall effects on the probe. It is also

consistent to note that the check runs using the longitudinal

holes to determine v gave lower values in this region.

Axial velocity. A higher deCree of precision in

measuring axial velocity components appears to be inherent

in either method of measurement except in regions where

the tangential component is of comparable magnitude. The

close agreement shown by the check runs appears to bear

this out.

Radial velocity. Although, as has Just been discussed,

it is extremely difficult to measure tangential and axial

velocities with any great degree of precision, the measure-

ments are reasonably reliable quantitatively and are certain-

ly accurate enough to give qualitatively the behavior of

these profiles with variations of the basic parameters.

On the other hand, since the radial velocities that must be

measured in such vortices are an order of magnitude smaller

than the other velocity components, the measurements that

were made of these velocities are probably of very little

value even in a qualitative sense. Nevertheless, for

completeness, as well as to give some idea as to the

magnitude of the experimental errors that were involved in

the measurement of the velocity component profiles, a

typical measurement of radial velocity is shown in figure

18. Included in this figure for comparison with the local

measurements are the radial velocity at the wall as obtained
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by mass flow measurement (the solid symbol) and a curve

showing an estimate of what the actual character of the

radial velocity profile must be like. This es'timate was

made by assuming that the axial velocity actually satisfied

the equation w = zf(r) so that the radial velocity

could be obtained from the measured axial velocity distribu-

tion through integration of the continuity equation. It

is seen that, as might be expected, the order of magnitude

of the radial velocity as measured is correct but the

experimental errors are such that no information is

contained in these data concerning the character of the

radial velocity profiles.

6.4. Static pressure profiles

In order to complete the picture of the behavior of

flows in simple cylindrical vortex chambers, there are

presented in figures 19 and 20 data concerning the static

pressures within a typical vortex. Figure 19 shows typical

plots of the non-dimensional pressure distributions obtained

across the exit of the vortex as the parameter V/U is

varied for the specific case when L/D = 5 and N = -900.

Figure 20 shows for the same case a comparison of the static

pressure at i/L = 0 and at i/L = 1.0 on the axis of

symmetry as a function of V/U. It is interesting to note

the change in the character of the static pressure distribu-

tions as V/U is increased above (V/U)cr , which in this

case is 2.95, and as V/U is increased beyond a second

critical value at V/U z 15 where a jump in the static

pressure on the centerline takes place for i/L = 1.
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7. Discussion of Experimental Results

The detailed behavior of the vortices on which experi-

mental data have Just been presented, especially the way

in which these vortices form their second cell, can best

be understood by means of a detailed discussion of a

typical case. We will discuss in detail the vortex

behavior for the case L/D = 5 and N = -900 with the

aid of figures 21 and 22. Figure 21 consists of the data

already plotted in figure 13, together with the following

additional information: (1) theoretical curves for

(P - PatI)/ U U- versus V/U obtained from the lamincar

theory for one-celled (dash dot curves) and two-celled

(dash double dot curves) vortex configurations; (2) the

pressure drop that might be expected if the fluid at the

exit of the vortex were turning as a solid body (dashed

curve); and (3) the pressure drops that one obtains from

an integration of the approximate radial momentum equation

db -2

di;

using the measured tangential velocity profiles at several

values of V/U (indicated by the solid symbols). Figure

22 gives a pictorial representation of the behavior of the

streamlines in and around the vortex chamber as the

rotational speed of the chamber ;'all is increased. Also

shown in this figure are the tangential velocity profiles,

typical of each condition, in the exit plane of the vortex.

Let us follow the behavior of the vortex on figures 21

and 22 as V/U is increased from zero to the highest value

at which measurements were made. Initially, when the

tangential velocity is zero, the flow in the vortex cap

is similar to that shown in figure 22a. The axial flow in
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the exit plane is everywhere outward with a velocity

distribution that is very close to the theoretical curve
for a one-celled laminar vortex, namely /i(0) = cos(r/R)2 .

There is, to the scale of the static pressure plot shown
in figure 21, essentially no difference between the static

pressure on the vortex centerline in the exit plane and the
ambient pressure (also see figure 19). The total pressure

shown in figure 22 for V/U = 0 is higher than ambient
pressure by Just the dynamic pressure of the outgoing flow.

As V/U is increased from zero, the flow within the
vortex cup retains its one-celled character as shown in

figure 22b for V/U = 2. Nevertheless, the dynamic pressure
of the exiting fluid on the centerline of the vortex is
very rapidly reduced. This is evident both from figure 21

and from the actual w/w(O) velocity profiles for this

particular case which are shown in figure 15. Apparently,
a second cell is foiing somewhere high above the vortex
chamber and is gradually moving towards the exit plane as

V/U is increased.
We should also note in figure 22b that the entrained

flow is no longer captured in just the same manner as it
was when V = 0. This is due to the centrifugal pumping
action of the rotating face plate of the vortex chamber.

As a result of this pumping action, there is a stagnation

point (actually a stagnation ring) somewhere on this
rotating plate. The air above the streamline to this
stagnation point is entrained by the flow out of the vortex

chamber. The air below this streamline is forced outward
away from the vortex by the pumping action of the face
plate.

As the rotational speed is increased further, the

dynamic pressure of the axial flow exiting from the
vortex becomes less and less until at the critical value
(V/U)cr = 2.95 it is exactly equal to zero as shown in
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figure 22c. We see that the second cell that had developed

far from the vorte- at low rotational speeds has been

sucked down toward the vortex chamber until, at V/U = 2.95,

the tip of this second cell has just reached the exit plane

of the chamber. Up until this critical value of V/U,

the tangential velocity distribution at the exit plane h.s

not been greatly altered in character as may be seen from

the tangential velocity distributions shown in figure 15.

Thus, in the range 0 < V/U < (V/U)cr, the pressure on the

centerline drops uniformly, roughly as the square of V/U.

Once the critical value of V/U has been reached, the

character of the tangential velocity distributions in the

exit plane changes markedly with V/U as the second cell of'

the vortex is sucked inside the chanber. Indeed, the

tangential velocities are lowered so much in the center of

the vortex (see figure 15) that the pressure drop is

actually reduced somewhat as seen in figure 21. A typical

streamline pattern for this regime is shown in figure 22d.

When the second cell of the vortex has been sucked

completely into tho vortex chamber, which occurs in the

case under discussion at V/U z 8, the pressure drop

across the vortex starts to increase again. It will be

noted however that, instead of following a curve similar

to those for constnt Reynolds number as given by the

laminar theory, the pressure drops far less rapidly. This

behavior in all cases appears to be due to an effective

increase in the turbulent or Reynolds stresses with increase

in V/U as discussed in Sections 3 and 4. Streamlines

typical of this flow regime are showm in figure 22e.

After the two-celled vortex pattern has been complete-

ly established, further increase in V/U results in a

continued increase in the pressure drop across the exit of

the vortex until a second critical value of V/U is reached.

At this point, V/U 15 in the case under discussion,
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there is a rapid rise in the general level of pressure

within the vortex at the exit plane. By careful probing

of the flow external to the vortex cup with fine tufts

and with smoke streams, it was possible to show that, in

all cases, this pressure rise was associated with a rather

sudden change in the flow pattern outside the vortex

chamber. The nature of this change is shown in figure 22f.

Inspection of the streamline patterns for V/U < 15 in

figure 22 reveals that there is alacys an entrained flow.

However, as V/U is incrlased, the streamlines leaving the

Vortex chamber do so in a more and more radial manner.

It was found that at the second critical value of V/U

the flow leaving the vortex cup attached itself almost

immediately to the rotating face plate outside the vortex

thus eliminating the entrained flow altogether. The

spreading out of the streamlines outside the vortex that

resulted was found to greatly reduce the amount of angular

momentum that the fluid entering the second cell of the

vortex could obtain by viscous action from the primary

flow leaving the vortex. As a result of this lowering of

the tangential velocity in the exit plane, the pressure

drop across the vortex was greatly reduced.

It would be expected that since this change of

streamline configuration must depend on the ratio of the

general level of axial velocity leaving the vortex to V,

the deeper the vortex chamber (higher ;W) the higher would

be the V/U required to effect this change. The fact that

this is so and that all the vortex chambers investigated

behaved in essentially the manner described above is amply

demonstrated by figure 23 when all the static pressure

measurements given in figures 9 through 13 are replotted.

It can be seen from figure 23 that since the vortex

cup is shallow in the cases of small L/D, the air in the

second vortex cell receives far less angular momentum from
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the primary vortex flow than in cases when L/D is large.

This is particularly true for the case when L/D = 1

after the flow outside the vortex has attached to the

rotating face plate (V/U > 8).

Another fact that is demonstrated by figure 23 is

that V/U is the primary parameter governing the behavior

of the vortices under discussion here. It will be noticed

that for each vurtpx ohqmber tested (L/D varied), the

reoults, though slightly dependent on Reynolds number are

essentially controlled by the parameter V/U. This is

particularly true of the vortex chambers of low L/D when

the effects of molecular viscosity which are expected to

be largest on the axial flow must necessarily be small.

The results shoim in figure 23 as well as the basic

measurements of (V/U)cr shown in figure 14, where it is

seen that for all intents and purposes (V/U)cr is

independent of Reynolds number for L/D < 5, give strong

support to the basic conjectures of Sections 3 and 4

concerning the nature of turbulent vortices.

In this regard, it may be of some interest to determine

the order of magnitude of the effective viscosity that a

laminar flow (as given by the exact solutions of Donaldson

and Sullivan) would have to have in order to match the

static pressure drops that have been observed in the exit

planes of the several vortex configurations tested.

Figure 24 is a plot of the ratio of effective to molecular

viscosity obtained by matching the experimental static

pressure drops at the exit to those given by the laminar

theory. This matching was only carried out when fully

developed one- or two-celled vortex structures existed.

The data are not, since the measured flows are not identical

to those given by the laminar theory, of fundamental

importance. Nevertheless, the general trend of the data
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indicates an increase in effective viscosity which is

roughly proportional to V/U.

One final point should be made before bringing this

discussion of the experimental results to a close. This

point has to do with the self-consistency and accuracy of

the data. The general agreement between the measured

static pressure drops and the pressure drops shown in figure

21 computed from the measured tangential velocity distribu-

tions can be taken as a measure of the accuracy of this

velocity distribution data. Since, in general, very small

changes in the tangential velocity near the center of a

vortex cause large changes in the static pressure drop

across the vortex it may be concluded, in view of the

general agreement of the results, that the tangential

velocity distributions measured near the center of the

vortices in this study are, in all probability, reasonably

accurate.
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8. Conclusions

As a result of the experimental study of the flow in

simple cylindrical vortex chambers completely open at one

end that has been presented in the preceding sections, the

following conclusions may be drawn:

(1) For turbulent vortices within cylindrical vortex

chambers having length-to-diameter ratios in the range

0 < L/D < 5, the primary parameter governing the character

of the flow is V/U; that is, the ratio of a characteristic

tangential to a characteristic radial velocity. This is in

marked contrast to the behavior of laminar vortices where

in addition to V/U the radial Reynolds number N = UR/v

is a most important parameter.

(2) For turbulent flow in vortex chambers in the above

L/D range, the establishment of a two-celled vortex configura-

tion is dependent on V/U alone. In particular, a second

cell will begin to be established in any such vortex when

the ratio of characteristic tangential to radial velocities

exceeds approximately 3.

(3) It appears that turbulent vortices behave in an

effectively more and more viscous manner the higher the

ratio V/U becomes.

(4) The experimental results tend to give general

support to the conjectures concerning the nature of three-

dimensional turbulent vortices given in Sections 3 and 4

of the present paper.
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